Что хранится на жестком диске

Про жёсткий диск Винчестера

Что хранится на жестком диске

Всё про жёсткий диск HDD.

Винчестер или жёсткий диск (HDD – hard disk drive – так и переводится) – это основное хранилище данных, в котором хранится ваша операционная система и все те данные, какие вы записываете на компьютер . Флешки, карты и прочее не в счёт. Без жёсткого диска компьютер неполноценен.

Винчестер или жёсткий диск : в чём разница?

Всё реже в компьютерной литературе встречается понятие винчестер, которое ещё недавно было популярным в качестве понятия хранилища данных и синонима жёсткого диска.

Оно уходит в небытие, так как фактически жёсткий диск винчестером называть нельзя.

Винчестер – или диск Винчестера – одно из ранних устройств, применявшихся в компьютерах IBM, и являвшееся, по сути, частично съёмным устройством.

Как видите его устройство очень напоминает устройство самого современного жёсткого диска.

Это устройство впервые увидело свет в уже далёком 1973, стало известным под названием модель 3340 и было способно хранить несколько десятков Мбайт данных: 30 Мб постоянной и 30 Мб съёмной памяти в виде снимаемого картриджа. Отсюда и название по аналогии с одноимённой американской винтовкой конца 19 века «Винчестера .30-30».

Сегодня жёсткий диск это устройство, которое характеризуется определённым набором  параметров. Как покупателей и потребителей нас интересуют самые главные из них:

Объём памяти

Скорость вращения

Размер буфера

Объём памяти. Здесь всё просто и логично. Чем больше объём, тем лучше. Производители могут быть разными, устройства различаться по качеству. Однако 500Гб это меньше, чем 1Тб . Считаем истину непреложной.

Скорость вращения шпинделя. Их две, и они стандартны: 5400 и 7200 об/мин. Встречаются диски с изменяемыми скоростями и работающие на более высоких скоростях, но это уже удел профессионалов и в обычном компьютерном магазине вы их не найдёте. Здесь тоже всё просто: чем быстрее скорость, тем быстрее ваш диск. Однако есть некоторые незначительные нюансы.

Так, для настольных компьютеров рекомендуется выбирать жёсткий диск с максимальной скоростью. Но если вы решили, что в компьютере найдётся место для двух устройств, распределите их так: жёсткий диск под систему или системы с максимальной скоростью меньшего объёма и HDD со скоростью 5400 об/мин, но объёмом побольше.

Кстати, в ноутбуке вы, скорее всего, не найдёте HDD на 7200 об/мин.

Размер буфера обмена данными с HDD. Размер буфера также определяется количеством памяти. Здесь тоже всё просто: чем выше, тем лучше. При покупке обратите внимание на размер: если вам продают жёсткий диск с размером буфера меньше 64 Мб – вам подсовывают старьё.

Ещё одним фактором при выборе HDD может послужить количество пластин или блинов внутри диска. Этот показатель редко выставляется на ценнике, его проще найти по модели устройства.  Считается, что меньшее количество блинов свидетельствует о более высокой бесшумности и надёжности. Моя личная практика такого подтверждения не находит.

Интерфейс жёсткого диска. Под мудрёным названием скрывается лишь способ подключения к разъёмам на материнской плате. Интерфейсов немало, но вам в магазине предложат только два: IDE и SATA. Сегодня предложат уже один – SATA. Первый устарел, современные платы выпускаются уже без слотов под него. Но если вы решили усовершенствовать своего «старичка», уточните прямо на месте.

Далее по выбору интерфейса. SATA-шных дисков успело наплодиться. Мне известны уже три серии или поколений: I, II и III. Различаются скоростью передачи данных: 1,5 Гбайт, 3 Гбайт и 6 Гбайт. Отличаются только скоростями. Материнская плата тоже имеет соответствующий слот под соответствующую скоростью. Но эти интерфейсы взаимозаменяемы.

Жёсткий диск: как влияет на его работу ориентация в пространстве?

Не задаваться этим вопросом может лишь тот, кому нет дела до того, что внутри компьютера понавешали. Однако те, кто хоть раз столкнулся с заменой жёсткого диска это вопрос себе задавали.

Давайте обратимся к первоисточникам. Вот что говорят по этому поводу сами производители винчестеров.

Информация стара как мир, но думаю, за последние десяток лет техника лишь прибавила в интеллектуальном развитии: я привожу её как есть, без купюр.

Hitachi

Диск будет функционировать во всех положения системы координат (я так понимаю, речь идёт именно о 6-ти). Уровни производительности и наличия ошибок останутся в пределах заявленной спецификации даже в случае, когда диск сориентирован в отличном положении, в котором был отформатирован.

Western Digital

Физическое расположение диска: жёсткие диски от WD будут функционировать нормально в положениях контроллером вверх или вниз (а также во всех направлениях в системе координат: X, Y и Z)

Maxtor

Жёсткий диск может быть сориентирован во всех положениях

Samsung

Если ваш жёсткий диск надёжно закреплён, он может быть установлен и вертикально и горизонтально в зависимости от того, какую структуру имеет корпус компьютера.

Далее. Был задан и конкретный вопрос по поводу “неправильной” ориентации диска, когда он закреплён под некоторым углом, а также предпочитаемых углах поворота. Вот информация от производителей в виде таблицы:

Производитель Как ответили Ответ на вопрос ——- ——————— ——————— WD Техподдержка, email 90 градусов Hitachi Hitachi по документации 90 градусов Samsung Техподдержка, телефон 90 градусов Fujitsu Техподдержка, в чате 90 градусов +- 5 Seagate Техподдержка, e-mail 90 градусов Maxtor Техподдержка, телефон 90 как угодно

Дальнейшие пояснения излишни. Ссылка на источник.

Жёсткий диск – принцип работы

Несущая в себе информационная часть жёсткого диска – отполированный блин или несколько блинов – состоит из миллиардов микроскопических разделов.

Каждый из них можно намагнитить (это будет читаться компьютером как «сигнал есть» или 1) и размагнитить («сигнала нет» – 0).

Физические законы, известные нам ещё со школы, используются здесь, так как намагниченные и размагниченные области сохраняют свойства, даже если питание компьютера выключить. Жёсткий диск, таким образом, сохранит всё, что вы заставили его запомнить.

Блины жёсткого диска сделаны из прочнейших представителей стекла или алюминиевых сплавов, покрытых мельчайшим слоем металла, который обладает способностью намагничиваться и размагничиваться. На каждый из блинов приходится по две читающие головки с каждой из сторон (в том числе с внутренней).

Обе части – рычаг с головкой и блин – приходят в движение во время работы: соленоид заставляет головку «бегать» по поверхности туда-сюда по всей плоскости блина, а сам блин вращается со скоростью, вам известной.

Сами головки поверхности не касаются: между ними свободное воздушное или газовое пространство.

Чтение и запись на жёсткий диск

Вы уже знаете, что данные, сохраняемые на HDD, это намагничивание или размагничивание головкой миллиардов секторов блина, которые этой же головкой возвращаются как совокупность сигналов 1 и 0, формируя биты, байты (и т.д.) информации. Секторы жёсткого диска концентрическими круговыми линиями группируются в треки.

Вся эта совокупность дешифруется системой как книга, видео, фотография и т.д. Но некоторая часть диска предназначена только для создания и хранения карты диска. Карта – это раздел диска, где хранится информация о том, какие секторы уже заняты, а куда ещё можно что-то записать.

Например, в Windows она называется FAT (File Allocation Table – таблица размещения файлов). Так что при чтении и записи данных с диска система сначала обращается к карте диска в поисках занятых и свободных секторов.

Но перед продажей проводится процедура физического форматирования для придания основы для записи операционной системы. После неё HDD выглядит так:

Жёсткий диск . Эволюция

Как вы видите, ваш жёсткий диск – устройство не самое простое.

Подобранные мельчайшие детали, микроскопические расстояния, огромные скорости вращения и жесточайшие требования частиц в воздухе при производстве – всё это делает жёсткий диск настоящим космическим устройством, за работой которого нужно внимательно следить.

Однако в качестве готового устройства современный жёсткий диск – очень надёжная вещь, которая способна порой выдерживать даже самые безбашенные нагрузки и пертурбации. Один из моих винчестеров, «случайно» выкинутых с приличной высоты (7 этажей), прекрасно заработал после незабываемого полёта. Но повторять не советую.

Хотите сами установить новый или дополнительный жёсткий диск?

Читайте, как установить HDD в компьютер.

Выбираем и следим за HDD

На что стоит обратить внимание при покупке? Ответ на вопрос вы уже знаете. Он дан в начале статьи. Определитесь с интерфейсом подключения HDD и подберите по параметрам, указанным выше. В процессе работы не допускайте:

  • Эксплуатации в задымлённой комнате
  • Частого физического форматирования
  • Постукиваний и ударов, особенно во время работы
  • Неправильной работы системы (особенно при включении и отключении компьютера
  • Не играйте сильными магнитами рядом с винчестером

Более подробно как продлить жизнь жёсткому диску, описано в статье “Почему сломался жёсткий диск“.

Что далее?

На смену работоспособным, в принципе, вечным и относительно уже недорогим устройствам пришли твердотелы SSD. Всё, чем он вам может не понравиться, это лишь его стоимость. Габариты, вес, скорость обмена данными, долговечность – преимущества этого хранилища перед предшественником неоспоримы.

Двигающихся  и вращающихся частей нет, операции в физическом пространстве не ограничены, дефрагментация файловой системы на таком диске стремится к нулю – от этого понятия можно будет отказаться. Теми же остаются требования к броскам температуры.

Так что принимаем к сведению: появилась возможность перейти на SSD – даже не размышляйте, берите. Старичок HDD пусть просто хранит информацию, выступая в качестве складского хозяйства.

Это не статья о проблеме выбора между HDD и SSD, однако на данный момент различия между двумя типами дисков оформились примерно так:

Описание работы SSD выходит за рамки статьи, так что, если выбор всё-таки станет остро, можно принимать решение в пользу…

HDD:

  • если деньги закончили начинаться
  • … но объёмы нужны серьёзные
  • вы привыкли к существующим скоростям работы в Windows (или другой ОС) и они вас устраивают.

SSD:

  • если очень хочется посмотреть, как Windows “летает”
  • вы не собираетесь хранить данные под десяток терабайт; 1-2 Тб хватит за глаза.

Успехов.

Источник: https://computer76.ru/2015/06/02/about-hdd/

Хранение информации на жестких дисках

Что хранится на жестком диске

Большинство пользователей, отвечая на вопрос, что находится в их системном блоке, помимо прочего упоминают винчестер. Винчестер – это устройство, на котором чаще всего хранятся Ваши данные. Бытует легенда, объясняющая, почему за жесткими дисками повелось такое причудливое название.

Первый жесткий диск, выпущенный в Америке в начале 70-х годов, имел емкость по 30 МБ информации на каждой рабочей поверхности. В то же время, широко известная в той же Америке магазинная винтовка О. Ф.

Винчестера имела калибр — 0,30; может грохотал при своей работе первый винчестер как автомат или порохом от него пахло — не знаю, но с той поры стали называть жесткие диски винчестерами.

В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки — все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске.

Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить.

Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных.

С одной стороны, в процессе написания этой статьи я ставил для себя задачей рассказать Вам:

  1. о принципах записи информации на жесткий диск;
  2. о размещении и загрузке операционной системы;
  3. о том как грамотно разделить Ваш новый винчестер на разделы с целью использовать несколько операционных систем.

С другой стороны, я хочу подготовить читателя ко второй статье, в которой я расскажу о программах, называемых boot manager-ами. Для того чтобы понимать, как работают эти программы, нужно обладать базовыми знаниями о таких вещах как MBR, Partitions и т. д.

Довольно общих слов — приступим.

2. Устройство жесткого диска

Жесткий диск (НDD — Hard Disk Drive) устроен следующим образом: на шпинделе, соединенным с электромотором, расположен блок из нескольких дисков (блинов), над поверхностью которых находятся головки для чтения/записи информации. Форма головкам придается в виде крыла и крепятся они на серпообразный поводок.

При работе они «летят» над поверхностью дисков в воздушном потоке, который создается при вращении этих же дисков. Очевидно, что подъемная сила зависит от давления воздуха на головки. Оно же, в свою очередь, зависит от внешнего атмосферного давления. Поэтому некоторые производители указывают в спецификации на свои устройства предельный потолок эксплуатации (например, 3000 м).

Ну чем не самолет? Диск разбит на дорожки (или треки), которые в свою очередь поделены на сектора. Две дорожки, равноудаленные от центра, но расположенные по разные стороны диска, называются цилиндрами.

Жесткий диск, как и всякое другое блочное устройство, хранит информацию фиксированными порциями, которые называются блоками.

Блок является наименьшей порцией данных, имеющей уникальный адрес на жестком диске. Для того чтобы прочесть или записать нужную информацию в нужное место, необходимо представить адрес блока в качестве параметра команды, выдаваемой контроллеру жесткого диска. Размер блока уже довольно с давних пор является стандартным для всех жестких дисков — 512 байт.

К сожалению, достаточно часто происходит путаница между такими понятиями как «сектор», «кластер» и «блок». Фактически, между «блоком» и «сектором» разницы нет. Правда, одно понятие логическое, а второе топологическое. «Кластер» — это несколько секторов, рассматриваемых операционной системой как одно целое. Почему не отказались от простой работы с секторами? Отвечу.

Переход к кластерам произошел потому, что размер таблицы FAT был ограничен, а размер диска увеличивался. В случае FAT16 для диска объемом 512 МБ кластер будет составлять 8 КБ, до 1 ГБ — 16 КБ, до 2 ГБ — 32 КБ и так далее.

Для того чтобы однозначно адресовать блок данных, необходимо указать все три числа (номер цилиндра, номер сектора на дорожке, номер головки). Такой способ адресации диска был широко распространен и получил впоследствии обозначение аббревиатурой CHS (cylinder, head, sector).

Именно этот способ был первоначально реализован в BIOS, поэтому впоследствии возникли ограничения, связанные с ним. Дело в том, что BIOS определил разрядную сетку адресов на 63 сектора, 1024 цилиндра и 255 головок. Однако развитие жестких дисков в то время ограничилось использованием лишь 16 головок в связи со сложностью изготовления.

Отсюда появилось первое ограничение на максимально допустимую для адресации емкость жесткого диска: 1024×16×63×512 = 504 МБ.

Со временем, производители стали делать HDD большего размера. Соответственно число цилиндров на них превысило 1024, максимально допустимое число цилиндров (с точки зрения старых BIOS).

Однако, адресуемая часть диска продолжала равняться 504 Мбайтам, при условии, что обращение к диску велось средствами BIOS.

Это ограничение со временем было снято введением так называемого механизма трансляции адресов, о котором чуть ниже.

Проблемы, возникшие с ограниченностью BIOS по части физической геометрии дисков, привели в конце концов к появлению нового способа адресации блоков на диске. Этот способ довольно прост. Блоки на диске описываются одним параметром — линейным адресом блока. Адресация диска линейно получила аббревиатуру LBA (logical block addressing). Линейный адрес блока однозначно связан с его CHS адресом:

lba = (cyl*HEADS + head)*SECTORS + (sector-1);

Введение поддержки линейной адресации в контроллеры жестких дисков дало возможность BIOS'aм заняться трансляцией адресов. Суть этого метода состоит в том, что если в приведенной выше формуле увеличить параметр HEADS, то потребуется меньше цилиндров, чтобы адресовать то же самое количество блоков диска.

Но зато потребуется больше головок. Однако головок-то как раз использовалось всего 16 из 255. Поэтому BIOS'ы стали переводить избыточные цилиндры в головки, уменьшая число одних и увеличивая число других. Это позволило им использовать разрядную сетку головок целиком.

Это отодвинуло границу адресуемого BIOS'ом дискового пространства до 8 ГБ.

Нельзя не сказать несколько слов и о Large Mode. Этот режим работы предназначен для работы жестких дисков объемом до 1 ГБ.

В Large Mode количество логических головок увеличивается до 32, а количество логических цилиндров уменьшается вдвое. При этом обращения к логическим головкам 0..

F транслируются в четные физические цилиндры, а обращения к головкам 10..1F — в нечетные. Винчестер, размеченный в режиме LBA, несовместим с режимом Large, и наоборот.

Дальнейшее увеличение адресуемых объемов диска с использованием прежних сервисов BIOS стало принципиально невозможным. Действительно, все параметры задействованы по максимальной «планке» (63 сектора, 1024 цилиндра и 255 головок). Тогда был разработан новый расширенный интерфейс BIOS, учитывающий возможность очень больших адресов блоков.

Однако этот интерфейс уже не совместим с прежним, вследствие чего старые операционные системы, такие как DOS, которые пользуются старыми интерфейсами BIOS, не смогли и не смогут переступить границы в 8GB. Практически все современные системы уже не пользуются BIOS'ом, а используют собственные драйвера для работы с дисками.

Поэтому данное ограничение на них не распространяется. Но следует понимать, что прежде чем система сможет использовать собственный драйвер, она должна как минимум его загрузить. Поэтому на этапе начальной загрузки любая система вынуждена пользоваться BIOS'ом.

Это и вызывает ограничения на размещение многих систем за пределами 8GB, они не могут оттуда загружаться, но могут читать и писать информацию (например, DOS который работает с диском через BIOS).

4. Разделы, или Partitions

Обратимся теперь к размещению операционных систем на жестких дисках. Для организации систем дисковое адресное пространство блоков разделяется на части, называемые разделами (partitions). Разделы полностью подобны целому диску в том, что они состоят из смежных блоков.

Благодаря такой организации для описания раздела достаточно указания начала раздела и его длины в блоках. Жесткий диск может содержать четыре первичных раздела.

Во время загрузки компьютера, BIOS загружает первый сектор головного раздела (загрузочный сектор) по адресу 0000h:7C00h и передает ему управление.

В начале этого сектора расположен загрузчик (загрузочный код), который прочитывает таблицу разделов и определяет загружаемый раздел (активный). А дальше все повторяется. То есть он загружает загрузочный сектор этого раздела на этот же адрес и снова передает ему управление.

Разделы являются контейнерами всего своего содержимого. Этим содержимым является, как правило, файловая система. Под файловой системой с точки зрения диска понимается система разметки блоков для хранения файлов.

После того, как на разделе создана файловая система и в ней размещены файлы операционной системы, раздел может стать загружаемым. Загружаемый раздел имеет в своем первом блоке небольшую программу, которая производит загрузку операционной системы.

Однако для загрузки определенной системы нужно явно запустить ее загрузочную программу из первого блока. О том, как это происходит, будет рассказано чуть ниже.

Разделы с файловыми системами не должны пересекаться.

Это связано с тем, что две разные файловые системы имеют каждая свое представление о размещении файлов, но когда это размещение приходится на одно и то же физическое место на диске, между файловыми системами возникает конфликт.

Этот конфликт возникает не сразу, а лишь по мере того, как файлы начинают размещаться в том месте диска, где разделы пересекаются. Поэтому следует внимательно относиться к разделению диска на разделы.

Само по себе пересечение разделов не опасно. Опасно именно размещение нескольких файловых систем на пересекающихся разделах. Разметка диска на разделы еще не означает создания файловых систем.

Однако, уже сама попытка создания пустой файловой системы (то есть форматирование), на одном из пересекающихся разделов может привести к возникновению ошибок в файловой системе другого раздела.

Все сказанное относится в одинаковой степени ко всем операционным системам, а не только самым популярным.

Диск разбивается на разделы программным путем. То есть, Вы можете создать произвольную конфигурацию разделов. Информация о разбиении диска хранится в самом первом блоке жесткого диска, называемым главной загрузочной записью (Master Boot Record (MBR)).

5. MBR

MBR является основным средством загрузки с жесткого диска, поддерживаемым BIOS. Для наглядности представим содержимое загрузочной области в виде схемы:

Все то что находится по смещению 01BEh-01FDh называется таблицей разделов. Вы видите, что в ней четыре раздела.

Только один из четырех разделов имеет право быть помеченным как активный, что будет означать, что программа загрузки должна загрузить в память первый сектор именно этого раздела и передать туда управление. Последние два байта MBR должны содержать число 0xAA55. По наличию этой сигнатуры BIOS проверяет, что первый блок был загружен успешно.

Сигнатура эта выбрана не случайно. Ее успешная проверка позволяет установить, что все линии данных могут передавать и нули, и единицы.

Программа загрузки просматривает таблицу разделов, выбирает из них активный, загружает первый блок этого раздела и передает туда управление.

Давайте посмотрим как устроен дескриптор раздела:

Смещение Описание
0000hмаркер начальной загрузки
0001hголовка
0002hcектор и цилиндр
0003hцилиндр
0004hсистемное описание
0005hголовка
0006hcектор и цилиндр
0007hцилиндр
0008h-000Bhсмещение секторов
000Ch-000Fhколичество секторов в разделе

* 0001h-0003h начало раздела
** 0005h-0007h конец раздела

С точки зрения разделов диска наиболее популярной до недавнего времени была и остается MS-DOS. Она забирает в свое пользование два из четырех разделов: Primary DOS partition, Extended DOS partition. Первый из них, (primary) это обычный досовый диск C:. Второй — это контейнер логических дисков.

Они все болтаются там в виде цепочки подразделов, которые так и именуются: D:, E:, … Логические диски могут иметь и инородные файловые системы, отличные от файловой системы DOS.

Однако, как правило, инородность файловой системы связана присутствием еще одной операционной системы, которую, вообще говоря, следовало бы поместить в свой собственный раздел (не extended DOS), но для таких выходок часто оказывается слишком маленькой таблица разделов.

Отметим еще одно важное обстоятельство. Когда на чистый жесткий диск устанавливается DOS, то при загрузке нет никаких альтернатив в выборе операционных систем.

Поэтому загрузчик выглядит весьма примитивно, ему не надо спрашивать у пользователя, какую систему тот хочет загрузить.

С желанием иметь сразу несколько систем возникает необходимость заводить программу, позволяющую выбирать систему для загрузки.

6. Заключение

Я надеюсь, что смог достаточно понятно и подробно представить для Вас базовую информацию об устройстве жесткого диска, MBR и PT. На мой взгляд, такого набора знаний вполне достаточно для мелкого «ремонта» хранилища информации. В следующей статье я расскажу Вам о программах, зовущихся Boot Manager, и принципах их работы.

Большое спасибо за помощь Владимиру Дашевскому

Источник: https://www.ixbt.com/storage/boot-man1.shtml

Как устроен жесткий диск компьютера (HDD)

Что хранится на жестком диске

Приветствую всех читателей блога pc-information-guide.ru. Многих интересует вопрос – как устроен жесткий диск компьютера. Поэтому я решил посвятить этому сегодняшнюю статью.

Жесткий диск компьютера (HDD или винчестер) нужен для хранения информации после выключения компьютера, в отличие от ОЗУ (оперативной памяти) – которая хранит информацию до момента прекращения подачи питания (до выключения компьютера).

Жесткий диск, по-праву, можно назвать настоящим произведением искусства, только инженерным. Да-да, именно так. Настолько сложно там внутри все устроено.

На данный момент во всем мире жесткий диск – это самое популярное устройство для хранения информации, он стоит в одном ряду с такими устройствами, как: флеш-память (флешки), SSD.

Многие наслышаны о сложности устройства жесткого диска и недоумевают, как в нем помещается так много информации, а поэтому хотели бы узнать, как устроен или из чего состоит жесткий диск компьютера. Сегодня будет такая возможность).

Устройство жесткого диска компьютера

Жесткий диск состоит из пяти основных частей. И первая из них – интегральная схема, которая синхронизирует работу диска с компьютером и управляет всеми процессами.

Вторая часть – электромотор (шпиндель), заставляет вращаться диск со скоростью примерно 7200 об/мин, а интегральная схема поддерживает скорость вращения постоянной.

А теперь третья, наверное самая важная часть – коромысло, которое может как записывать, так и считывать информацию.

Конец коромысла обычно разделен, для того чтобы можно было работать сразу с несколькими дисками. Однако головка коромысла никогда не соприкасается с дисками.

Существует зазор между поверхностью диска и головкой, размер этого зазора примерно в пять тысяч раз меньше толщины человеческого волоса!

Но давайте все же посмотрим, что случится, если зазор исчезнет и головка коромысла соприкоснется с поверхностью вращающегося диска.

Мы все еще со школы помним, что F=m*a (второй закон Ньютона, по-моему), из которого следует, что предмет с небольшой массой и огромным ускорением – становится невероятно тяжелым.

Учитывая огромную скорость вращения самого диска, вес головки коромысла становится весьма и весьма ощутимым. Естественно, что повреждение диска в таком случае неизбежно. Кстати, вот что случилось с диском, у которого этот зазор по каким то причинам исчез:

Так же важна роль силы трения, т.е. ее практически полного отсутствия, когда коромысло начинает считывать информацию, при этом смещаясь до 60 раз за секунду.

Но постойте, где же здесь находится двигатель, что приводит в движение коромысло, да еще с такой скоростью? На самом деле его не видно, потому что это электромагнитная система, работающая на взаимодействии 2 сил природы: электричества и магнетизма.

Такое взаимодействия позволяет разгонять коромысло до скоростей света, в прямом смысле.

Четвертая часть – сам жесткий диск, это то, куда записывается и откуда считывается информация, кстати их может быть несколько.

Ну и пятая, завершающая часть конструкции жесткого диска – это конечно же корпус, в который устанавливаются все остальные компоненты. Материалы применяются следующие: почти весь корпус выполнен из пластмассы, но верхняя крышка всегда металлическая. Корпус в собранном виде нередко называют “гермозоной”. Бытует мнение, что внутри гермозоны нету воздуха, а точнее, что там – вакуум.

Мнение это опирается на тот факт, что при таких высоких скоростях вращения диска, даже пылинка, попавшая внутрь, может натворить много нехорошего. И это почти верно, разве что вакуума там никакого нету – а есть очищенный, осушенный воздух или нейтральный газ – азот например. Хотя, возможно в более ранних версиях жестких дисков, вместо того, чтобы очищать воздух – его просто откачивали.

Это мы говорили про компоненты, т.е. из чего состоит жесткий диск. Теперь давайте поговорим про хранение данных.

Как и в каком виде хранятся данные на жестком диске компьютера

Данные хранятся в узких дорожках на поверхности диска. При производстве, на диск наносится более 200 тысяч таких дорожек. Каждая из дорожек разделена на секторы.

Карты дорожек и секторов позволяют определить, куда записать или где считать информацию. Опять же вся информация о секторах и дорожках находится в памяти интегральной микросхемы, которая, в отличие от других компонентов жесткого диска, размещена не внутри корпуса, а снаружи и обычно снизу.

Сама поверхность диска – гладкая и блестящая, но это только на первый взгляд. При более близком рассмотрении структура поверхности оказывается сложнее. Дело в том, что диск изготавливается из металлического сплава, покрытого ферромагнитным слоем. Этот слой как раз и делает всю работу. Ферромагнитный слой запоминает всю информацию, как? Очень просто.

Головка коромысла намагничивает микроскопическую область на пленке (ферромагнитном слое), устанавливая магнитный момент такой ячейки в одно из состояний: о или 1. Каждый такой ноль и единица называются битами.

Таким образом, любая информация, записанная на жестком диске, по-факту представляет собой определенную последовательность и определенное количество нулей и единиц. Например, фотография хорошего качества занимает около 29 миллионов таких ячеек, и разбросана по 12 различным секторам.

Да, звучит впечатляюще, однако в действительности – такое огромное количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности жесткого диска включает в себя несколько десятков миллиардов битов.

Принцип работы жесткого диска

Мы только что с вами рассмотрели устройство жесткого диска, каждый его компонент по отдельности. Теперь предлагаю связать все в некую систему, благодаря чему будет понятен сам принцип работы жесткого диска.

Итак, принцип, по которому работает жесткий диск следующий: когда жесткий диск включается в работу – это значит либо на него осуществляется запись, либо с него идет чтение информации, или с него загружается ОС, электромотор (шпиндель) начинает набирать обороты, а поскольку жесткие диски закреплены на самом шпинделе, соответственно они вместе с ним тоже начинают вращаться. И пока обороты диска(ов) не достигли того уровня, чтобы между головкой коромысла и диском образовалась воздушная подушка, коромысло во избежание повреждений находится в специальной “парковочной зоне”. Вот как это выглядит.

Как только обороты достигают нужного уровня, сервопривод (электромагнитный двигатель) приводит в движение коромысло, которое уже позиционируется в то место, куда нужно записать или откуда считать информацию. Этому как раз способствует интегральная микросхема, которая управляет всеми движениями коромысла.

Распространено мнение, этакий миф, что в моменты времени, когда диск “простаивает”, т.е. с ним временно не осуществляется никаких операций чтения/записи, жесткие диски внутри перестают вращаться. Это действительно миф, ибо на самом деле, жесткие диски внутри корпуса вращаются постоянно, даже тогда, когда винчестер находится в энергосберегающем режиме и на него ничего не записывается.

Ну вот мы и рассмотрели с вами устройство жесткого диска компьютера во всех подробностях. Конечно же, в рамках одной статьи, нельзя рассказать обо всем, что касается жестких дисков. Например в этой статье не было сказано про интерфейсы жесткого диска – это большая тема, я решил написать про это отдельную статью.

Нашел интересное видео, про то, как работает жесткий диск в разных режимах

Всем спасибо за внимание, если вы еще не подписаны на обновления этого сайта – очень рекомендую это сделать, дабы не пропустить интересные и полезные материалы. До встречи на страницах блога!

Источник: http://pc-information-guide.ru/zhestkij-disk/kak-ustroen-zhestkij-disk-kompyutera-hdd.html

Как работает жесткий диск и основы диагностики на примере HDDScan

Что хранится на жестком диске

Низкая производительность компьютера не всегда исчисляется возрастом процессора или видеокарты. На мощность сборки могут влиять и другие комплектующие. Например, отзывчивость компьютера сильно зависит от качества дисков.

Пусть в нем будет хоть дюжина ядер — если диск не может «прокормить» столько ртов, то комфортной работы в таких условиях не добиться.

Эту проблему полностью решили с помощью твердотельных накопителей с высокими скоростями, но основной сегмент объемных накопителей все еще населяют старые добрые винчестеры. Их особенность такова, что со временем они начинают «сыпаться» и значительно снижают производительность.

Чтобы отловить подлеца и вернуть свежесть рабочей лошадке, положимся на специальный софт. В нашем примере это утилита HDDScan. Заодно посмотрим, что она умеет делать с SSD.

Скорость работы диска прямо пропорционально влияет на производительность компьютера. Все потому, что на диске хранятся не только фотографии и музыка, но и тысячи мелких системных файлов, к которым бесконечно обращается процессор во время работы. Соответственно, чем быстрее он получает необходимые данные, тем счастливее пользователь.

Вообще, специфику доставки файлов с диска можно сравнить с работой курьера. Если дорога ровная, пустая и без пробок, то товар доберется до покупателя мгновенно. Когда курьер каждый раз попадает на красный сигнал светофора или просто физически не может ехать быстрее из-за ям и кочек, доставка пиццы или видеокарты затягивается.

Так и со скоростью работы диска: чем меньше препятствий найдется на пути к оперативной памяти и процессору, тем быстрее работает компьютер. Только вместо светофоров и дорог здесь свои нюансы, а такое примитивное сравнение помогает легко разобраться в том, как работают накопители, и для чего нужно проверять диски на битые секторы. Начнем с классики.

Обойдем дебри радиоэлектроники стороной и поверхностно рассмотрим конструкцию жесткого диска. Обычный винчестер состоит из четырех основных деталей:

  • Плата с управляющей электроникой
  • Двигатель
  • Магнитные диски (пластины)
  • Считывающие головки

На пластинах содержится информация в виде намагниченных секторов. Каждый сектор может содержать от 512 байт данных. Он находится в связке с другими на треке. Треков у пластины тоже несколько, их количество зависит от плотности. Для чтения информации используются магнитные «головки», которые молниеносно двигаются по всей поверхности пластины и считывают сектор за сектором.

https://www.youtube.com/watch?v=GLmUOpkLpkE

В идеальных условиях головка должна последовательно считывать каждый сектор в одном треке и плавно переезжать на следующий по мере чтения информации, как это происходит при проигрывании виниловых пластинок. Но дело в том, что информация на диске раскидана по всей поверхности, что значительно усложняет скорость доступа к определенным секторам.

Представим, что нужно собрать 100 яблок. В саду растет 100 деревьев и между ними расстояние 100 метров. Условие такое: один человек собирает яблоки только с одного дерева, другой собирает только по одному с каждого. Конечно, первый наберет нужное количество в несколько раз быстрее, потому что не будет затрачивать время на беготню между деревьями.

То же самое происходит и в жестком диске — только вместо людей там магнитные головки, вместо яблок — секторы, а за стометровку принят трек. Впрочем, работу диска лучше посмотреть вживую:

Так работает подвижная часть устройства, которая управляется материнской платой. На ней расположены основные элементы:

  • Процессор
  • Оперативная память
  • Чип с прошивкой
  • Контроллер управления двигателем

Система управления диском работает подобно настоящему компьютеру: чем мощнее процессор и больше оперативной памяти у диска, тем быстрее он обрабатывает данные с магнитных пластин. Соответственно, у таких устройств бывают сбои и проблемы аппаратного характера.

Бить нельзя ронять

Конечно, физически сломать диск пополам не так просто, а вот повредить некоторые детали во время работы можно легко. Первое, чего боится винчестер, это удар или падение во время работы. Считывающая головка находится прямо над магнитной пластиной и при резком ударе обязательно коснется ее поверхности, потому что зазор между ними меньше, чем отпечаток пальца человека:

А пластина в это время вращается со скоростью 7200 об/мин. После такого «касания» диск можно выкидывать:

Чтобы исключить случаи с «запилами» на пластинах, производители научили головки парковаться. Теперь считывающее устройство при отсутствии задания на чтение и запись отъезжает в безопасное место и не «нависает» над вращающимся диском. И тогда бей, пинай — диску все равно (шутка).

Количество включений и заклинивание шпинделя

На продолжительность безотказной работы диска также влияет количество раскручиваний шпинделя, который вращает магнитные пластины. При включении двигатель потребляет повышенные токи по сравнению с рабочим состоянием, поэтому драйвер, который управляет его скоростью, может запросто вылететь от перегрузки.

Это вряд ли грозит новому диску, но легко может подкосить пожилой накопитель. Поэтому для «послуживших» рекомендуют отключать функции энергосбережения и сна, чтобы не провоцировать технику повышенным потреблением.

Обратная сторона такого подхода — нагрев. Если не следить за рабочими температурами винчестера, можно довести его до ручки и перегреть. Из-за этого уменьшается тепловой зазор в движущихся частях двигателя и, как следствие, выдавливается смазка. Работа без масла и охлаждения приводит к заклиниванию шпинделя.

«Посыпался»

Диск рассыпается, конечно, не в прямом смысле, просто выходят из строя секторы с данными. Те, которые содержат по 512 байт информации и располагаются в треках.

Причиной повреждения секторов может быть физическое воздействие на пластины — запилы от головок или попадание и растаскивание грязи по дискам.

Также на целостность магнитной поверхности влияет температурный режим накопителя и просто количество часов наработки.

При считывании информации каждому сектору необходимо время, чтобы намагнититься или размагнититься. Свежие и шустрые секторы (блоки) делают это очень быстро, поэтому новый диск всегда работает заметно шустрее. Когда реакция блоков на изменения состояния снижается, то время, которое необходимо для полного считывания информации из сектора, увеличивается. А за ним снижается и скорость.

Модифицируем наш пример с яблоками. фрукты, висящие на нижних ветках, собирать легче и быстрее, а те, которые поспели на верхушке, достать тяжело. Соответственно, чем быстрее достает до яблока сборщик, тем быстрее наберется нужное количество. А тот, кто полезет за фруктом на вершину, будет тормозить весь процесс.

Если блоки не отвечают на запросы считывающих головок, их считают битыми или бэдами (сокращение от bad block — «плохой блок»). Такие блоки появляются на всех винчестерах без исключения и даже попадаются на новых дисках с завода.

Это издержки технологии производства магнитных накопителей. Тем не менее, это и единственная частая поломка, которую можно найти самостоятельно в домашних условиях.

Для этого существуют специальные утилиты, к одной из которых мы и обратимся за помощью.

Для поиска «плохишей» на поверхности магнитных пластин используется разный софт. Некоторые программы работают только в системе DOS, другие можно запустить в Windows. Одна из таких утилит HDDScan.

Это очень простая программа и она заточена под быстрый прогон дисков и поиск битых секторов, чем мы и займемся. Для этого нам нужны добровольцы — это винчестер 3.5 для настольных компьютеров и старый ноутбучный 2.5 диск.

Посмотрим, у кого из них завелись «плохиши».

S.M.A.R.T

При первом запуске программы необходимо выбрать, над каким устройством будем ставить эксперименты.

Затем можно перейти во вкладку SMART, чтобы узнать о состоянии диска, которое мониторится с помощью программы самотестирования в прошивке диска. Для этого щелкаем первую кнопку в программе и смотрим на вывод.

Зеленые точки — все классно. Желтые восклицательные знаки обращают внимание на недочеты в работе. Именно в этом диске система SMART говорит о превышении переназначенных секторов и множественных ошибках чтения информации. Коды ошибок — 005, 197 и 198.

Что такое переназначенный сектор — это область, которая выпала из магнитной пластины и была переназначена на дополнительное место, где для таких случаев производитель оставляет некоторое количество запасных секторов. Их запас ограничен, поэтому при исчерпании лимита диск ругается на превышение.

Так выглядит SMART исправного винчестера:

Тест поверхности диска

Отлавливать плохие блоки интересно, но очень долго. Причем длительность проверки поверхности будет зависеть от объема жесткого диска. Хорошо, что для тестов к нам в руки попали модели с небольшим объемом, а один диск — еще и битый до чертиков. Другими словами, то, что нужно для наглядного тестирования. Итак, выбираем нужный накопитель в программе и щелкаем по кнопке «Tests».

Программа предложит четыре варианта тестирования:

  • Verify — диск будет считывать блоки и записывать информацию к себе в буфер (та самая ОЗУ на плате диска);
  • Read — то же самое, только информация о блоках будет передаваться через SATA в компьютер;
  • Butterfly — аналогично тесту Read, но блоки считываются попарно: первый блок участка и последний, и так пока не будут проверены все секторы на треке;
  • Erase — название говорит само за себя: при тестировании блоки будут перезаписаны нулями (это нужно для полного форматирования диска без возможности восстановления данных).

Для наших экспериментов достаточно Verify. Щелкаем и запасаемся терпением: спим, гуляем, работаем, играем.

Во время теста программа будет рисовать квадраты. Это блоки. Каждый заполняется определенным цветом исходя из скорости отклика: чем быстрее блок, тем меньше времени ему нужно на отклик.

Время отзыва измеряется в миллисекундах и указывается справа в окне программы. Там же указано общее количество блоков. Этот диск исправен и блоки в нем довольно отзывчивые, основная часть из них работает быстрее 10 миллисекунд.

Три — самые быстрые и еще три отзываются за 20 мс. Такой диск посыпаться не должен.

Теперь проверим другой накопитель, который был снят с ноутбука из-за низкой производительности. Включаем тот же тест:

Вот они, «плохиши». Буквально с самого запуска посыпались бэды. А еще кучка разноцветных блоков. Это самые ленивые точки на поверхности диска, которые очень долго реагируют на команды и скоро превратятся в Bads — блоки, которые вышли из строя полностью и являются фактически пробоинами на поверхности пластин.

Для сравнения, вот что показывает пятилетний SSD в этом же тесте:

Почти все блоки отвечают за 5 мс и меньше. Это не удивительно, ведь SSD-диски твердотельные и не имеют намагниченных пластин. Они менее склонны к деградации от физических воздействий и не реагируют на попадание грязи.

Зато у них есть микросхемы памяти, которые непременно начнут терять «банки» после преодоления заводского лимита на перезапись. Для каких-то дисков это 100 терабайт, для каких-то — больше.

Этот SSD сыпется из-за большого пробега:

Прочие возможности

Программа умеет показывать температуру накопителей. При тестировании винчестеры работают на износ и ощутимо нагреваются, поэтому необходимо обязательно следить за температурой и создавать хорошие условия для охлаждения дисков:

В разделе Tools -> Features есть несколько функций для тонкой настройки:

  • Automatic Acoustic Management — позволяет установить скорость передвижения головок, чтобы уменьшить шум ценой снижения производительности.
  • Advanced Power Management — то же самое, только регулирует скорость шпинделя.
  • Power Management — время, через которое диск уйдет в сон.
  • Spindle Control — принудительное управление шпинделем (двигателем).

Поддержка этих функций зависит от накопителя, поэтому некоторые из них могут быть недоступны для регулировки.

Программа позволяет быстро проверить состояние накопителей, причем не только HDD, но и современных SSD. Это пока доступно не всем утилитам, а HDDScan в этом плане удобна и интуитивна. Тем более, что утилита запускается из под работающей системы и не требует создания загрузочного диска.

Очевидный вопрос читателя — как понять, что диск скоро начнет сыпаться и когда начинать поиск замены. Для этого ориентируемся на количество разноцветных блоков:

Видно, что диск еще не теряет секторы, но несколько цветных блоков портят картину и указывают на то, что поверхность пластин уже изнашивается.

При интенсивном использовании этого накопителя красные и зеленые блоки превратятся в бэды. Эти блоки, между прочим, очень заметны в играх и проявляют себя как фризы или даже вылеты.

Так диск начинает сыпаться. Крайне не рекомендуется хранить на нем важную информацию.

Поэтому стоит подумать о замене старого доброго винчестера на новый или переехать на современный твердотельный диск с высокой скоростью. К слову, последние все чаще становятся доступны даже для сборки бюджетных систем.

Источник: https://club.dns-shop.ru/blog/t-107-jestkie-diski/41222-kak-rabotaet-jestkii-disk-i-osnovyi-diagnostiki-na-primere-hddsca/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.